粒子群算法综述论文

粒子群算法综述论文

问:利用粒子群算法写论文一定要改进吗
  1. 答:对于论文,首先就是要有创新点,或者实际应用。不改进就是别人的东西,改进了就是你自己的了。建议模仿别人的混合其他算法或者改进参数,或者参数自动生成等。这样有了改进的东西的论文才有创新点。
问:粒子群算法及其应用
  1. 答:既然是数学系的,可以考虑从粒子群算法的收敛性证明和分布性检验方面着手,偏理论性的证明,这方面比较欠缺,有点类似于高楼地基不稳,大家却在上面继续垒
    可以参考遗传算法的模式定理或隐性并行性定理等,如果能够提出关于粒子群算法的定理,应该足够具有挑战性了
    还有就是对粒子群算法进行算法融合或改进,然后针对改进的算法进行测试,检验其在函数优化等方面的效能。
  2. 答:粒子群算法是一种新的模仿鸟类群体行为的智能优化算法,现已成为进化算法的一个新的重要分支。全书共分为八章,分别论述了基本粒子群算法和改进粒子群算法的原理,并且详细介绍了粒子群算法在函数优化、图像压缩和基因聚类中的应用,最后给出了粒子群算法的应用综述和相关程序代码。
  3. 答:遗传算法是一个比较实用的算法,我们公司有需要,如果有学生有兴趣,可以到我们公司实习。
问:粒子群算法的优点
  1. 答:第一,算法规则简单,容易实现,在工程应用中比较广;第二,收敛速度快,且有很多措施可以避免陷入局部最优;第三,可调参数少,并且对于参数的选择已经有成熟的理论研究成果,见Eberhart的论文。
粒子群算法综述论文
下载Doc文档

猜你喜欢